Documentation

TTFPI.SimplyTyped

Equations
Instances For
    Equations
    Instances For
      Equations
      Instances For
        Equations
        • L.Subterm M = (L M.Sub)
        Instances For
          Equations
          Equations
          Equations
          Instances For
            @[reducible, inline]
            Equations
            Instances For
              @[reducible, inline]
              Equations
              Instances For
                Instances For
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    Equations
                    Instances For
                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        Equations
                        Instances For
                          Equations
                          Instances For
                            Equations
                            Instances For
                              theorem SimplyTyped.Finset.diff_subset_iff {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} :
                              s \ t u s t u
                              @[simp]
                              theorem SimplyTyped.thinning {Γ : SimplyTyped.Context} {Δ : SimplyTyped.Context} {M : SimplyTyped.Term} {σ : SimplyTyped.Typ} (h : Γ Δ) :
                              (Γ M : σ)Δ M : σ
                              @[simp]
                              theorem SimplyTyped.condensing {Γ : SimplyTyped.Context} {M : SimplyTyped.Term} {σ : SimplyTyped.Typ} (J : Γ M : σ) :
                              (Γ M.FV) M : σ
                              @[simp]
                              @[simp]
                              theorem SimplyTyped.generation_app {Γ : SimplyTyped.Context} {M : SimplyTyped.Term} {N : SimplyTyped.Term} {τ : SimplyTyped.Typ} :
                              (Γ M N : τ) ∃ (σ : SimplyTyped.Typ), (Γ M : σ τ) Γ N : σ
                              @[simp]
                              theorem SimplyTyped.generation_abs {Γ : SimplyTyped.Context} {x : Name} {M : SimplyTyped.Term} {σ : SimplyTyped.Typ} {ρ : SimplyTyped.Typ} :
                              (Γ SimplyTyped.Term.abs x σ M : ρ) ∃ (τ : SimplyTyped.Typ), (insert (x, σ) Γ M : τ) ρ = (σ τ)
                              @[simp]
                              theorem SimplyTyped.uniqueness_of_types {Γ : SimplyTyped.Context} {M : SimplyTyped.Term} {σ : SimplyTyped.Typ} {τ : SimplyTyped.Typ} (Jσ : Γ M : σ) (Jτ : Γ M : τ) :
                              σ = τ
                              Equations
                              Instances For
                                Equations
                                Instances For
                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    theorem SimplyTyped.substitution {Γ : SimplyTyped.Context} {Δ : SimplyTyped.Context} {M : SimplyTyped.Term} {N : SimplyTyped.Term} {x : Name} {σ : SimplyTyped.Typ} {τ : SimplyTyped.Typ} (hM : insert (x, σ) (Γ Δ) M : τ) (hN : Γ N : σ) :
                                    (Γ Δ) SimplyTyped.subst M x N : τ
                                    Instances For
                                      Equations
                                      • SimplyTyped.instCoeBetaBetaChain = { coe := }
                                      Instances For
                                        @[simp]
                                        theorem SimplyTyped.beta_eq_trans {L : SimplyTyped.Term} {M : SimplyTyped.Term} {N : SimplyTyped.Term} (hlm : L M) (hmn : M N) :
                                        L N
                                        theorem SimplyTyped.subject_reduction {Γ : SimplyTyped.Context} {L : SimplyTyped.Term} {L' : SimplyTyped.Term} {ρ : SimplyTyped.Typ} (hj : Γ L : ρ) (hb : L ↠β L') :
                                        Γ L' : ρ